Extensive cytotoxic lesions involving both the rhinal cortices and area TE impair recognition but spare spatial alternation in the rat.

نویسندگان

  • J P Aggleton
  • S Keen
  • E C Warburton
  • T J Bussey
چکیده

Rats with cytotoxic lesions of the perirhinal, postrhinal, and TE cortices (Rh+TE, n = 7) were compared with surgical control animals (n = 7) on a series of spontaneous object recognition tests. The Rh+TE group was associated with a failure to select the novel object. This recognition deficit contrasted with the apparently normal ability of the same animals to learn and perform a spatial working memory test (T-maze alternation). The animals were also tested on the acquisition of an automated visual discrimination task in which the stimuli were presented on a visual display unit (VDU) equipped with a touch screen. The animals with Rh+TE lesions showed only a borderline deficit on this task. These findings are consistent with other evidence implicating the rhinal region in recognition memory. More importantly, they also provide a dissociation between spatial working memory and object recognition and, hence, show that extensive rhinal lesions are not sufficient to disconnect the hippocampus functionally.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neurotoxic lesions of the rat perirhinal and postrhinal cortices and their impact on biconditional visual discrimination tasks.

It has been argued that damage to the perirhinal cortex should impair visual discriminations when the stimuli have overlapping features. In Experiment 1, rats with perirhinal cortex lesions were trained on a series of visual discriminations in a water tank, culminating in a biconditional discrimination. No evidence was found of a perirhinal lesion deficit, although the same rats showed an objec...

متن کامل

Lesions of the Rat Perirhinal Cortex Spare the Acquisition of a Complex Configural Visual Discrimination Yet Impair Object Recognition

Rats with perirhinal cortex lesions were sequentially trained in a rectangular water tank on a series of 3 visual discriminations, each between mirror-imaged stimuli. When these same discriminations were tested concurrently, the rats were forced to use a configural strategy to solve the problems effectively. There was no evidence that lesions of the perirhinal cortex disrupted the ability to le...

متن کامل

Brain glucose hypometabolism after perirhinal lesions in baboons: implications for Alzheimer disease and aging.

The authors previously reported that excitotoxic lesions of both the perirhinal and entorhinal cortices in baboons induce remote neocortical and hippocampal hypometabolism reminiscent of that observed in Alzheimer disease (AD), suggesting that disconnection may play a role in AD. Because the cerebral metabolic rate of glucose (CMR ) was preferentially correlated with perirhinal damage, the area...

متن کامل

The Effect of Ketanserin and Pirenperone Injected into the CA1 Region on Spatial Discrimination

In the present study, the effect of 5-HT2A receptor blockers in CA1 region of rat hippocampus on spatial learning was assessed in a T-maze, a spatial discrimination task. Rats were canulated bilaterally and injected daily vehicle (saline), 5-HT2A-selective antagonist, ketanserin (0.6, 1.2 or 2.4 µg/0.5 µl) and pirenperone (0.1, 0.3, 1.2 or 2.4 µg/0.5 µl) into the cannula 30 minutes before train...

متن کامل

Why do lesions in the rodent anterior thalamic nuclei cause such severe spatial deficits?

Lesions of the rodent anterior thalamic nuclei cause severe deficits to multiple spatial learning tasks. Possible explanations for these effects are examined, with particular reference to T-maze alternation. Anterior thalamic lesions not only impair allocentric place learning but also disrupt other spatial processes, including direction learning, path integration, and relative length discrimina...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Brain research bulletin

دوره 43 3  شماره 

صفحات  -

تاریخ انتشار 1997